
SUPERAGI

AGENTSPEAK TOOLKIT

Before the advent of LLMs and LLM-based

agents, there was much prior work on

autonomous agency.

We felt it important not to neglect, but to

instead incorporate, the preexisting research

into autonomy.

Some features that I observed were Lacking (when first
hearing about and then tinkering with LLM-based

autonomous agents):

¢ Sophisticated Control Flow / Event Loops
¢ Task Convergence
e Repeatability / Reproduciblity

e Verification / Formal Methods
e Sensing or Acting
¢ Declarative Programming

Example: Early Agent Control Flow:

ull the first incomplete task

Execute task

Execution Agent

Return result

Step 2: Enrich result and store in Vector DB

Retrieve context Return context _ Store result in Vector DB

Context Agent Step 3: Create new tasks and reprioritize task list

Create new tasks / Return new tasks \ Reprioritize task list)Return prioritized tasks

Task Creation Agent Prioritization Agent

We need something that can provide:

e Adherence: pin down the agent to keep it on task.

¢ Completeness: ensure that it doesn't drop the
ball on any tasks.

e Versatility: allow developers more control over

the agents.

e for use cases like our DeployGPT system.
e Explainability: allow a formal representation.

AgentSpeak is a great language for

reasoning with beliefs, desires and

intentions.

It is great at adding and removing goals at

run time, which a lot of planning technologies

lack (like PDDL).

https://jason.sourceforge.net/wp

Jason

--_,, extended version of AgentSpeak by Gustave Moreau (1855)

Co

Download the latest
version of Jason!

Read the tutorial for installing
Jason as an Eclipse plug-in!

News

About Jason

SPL. See more in the

aiu2019

(latest

Authors

Jason is developed by and based on previous work sing Jason:
done a | Fisher, Joyce Martins, Alvaro Moreir
Renata + Ast place: LFC (using

+ 4th place: TR
in the manu

“Jason Is an interpreter for an

extended version of

AgentSpeak. It implements the

operational semantics of that

language, and provides a

platform for the development of

multi-agent systems, with many

user-customizable features.”

Eason console —
y

a Gunching Domestick
Parsing ~
— la

From: https://jason.sourceforge.net/wp/description
One of the best known approaches to the development

of cognitive agents is the BDI (Beliefs-Desires-
Intentions) architecture. In the area of agent-oriented

programming Languages in particular,

AgentSpeak has been one of the most influential abstract
languages based on the BDI architecture. The type of
agents programmed with AgentSpeak are sometimes referred
to as reactive planning systems.

To the best of our knowledge, Jason is the first fully-
fledged interpreter for a much improved version of

AgentSpeak, including also speech-act based inter-agent
communication.

Using Saci (for example), a Jason multi-agent system can
be distributed over a network effortlessly. Various ad
hoc implementations of BDI systems exist,

but one important characteristic of AgentSpeak is its

theoretical foundation: it is an implementation of the

operational semantics, formally given to the AgentSpeak
language and most of the extensions available in Jason.

We therefore have begun work providing

SuperAGI with a marketplace toolkit that will

enable a DSL for control flow and event

loops, by exposing an AgentSpeak interface

icone

AgentSpeak therefore can provide a

skeleton or backbone, upon which to rig the

LLM-based autonomous agent.

This will serve to both constrain and guide

the actions of the autonomous agents.

Integrating AgentSpeak w/ SuperAGI can be

likened to creating a system with a co-

processor.

We envision installing the AgentSpeak

marketplace toolkit, which will then hook

itself into the event loop / control flow of

SuperAGIl, and provide developers with extra

capabilities.

Both developers and autonomous agents

can eventually generate and edit the

AgentSpeak programs.

Furthermore, AgentSpeak programs can

invoke and control all manner of LLM

behavior and API functions.

Here is some sample Jason/AgentSpeak(L)

code that was generated by GPT-4:

!'evacuate(Person).
+!evacuate(Person) : true <-

.print("Identify the safest evacuation route for ", Person);

identify _route(Person, Route) ;!communicate evacuation plan(Pers
+!communicate evacuation plan(Person, Route) : true <-

.print("Communicate the evacuation plan to ", Person);
inform person(Person, Route).

+!monitor_evacuation(Person) : true <-
.print("Monitor the evacuation progress of ", Person);

monitor progress(Person).
+!provide resources(Person) : true <-

.print("Provide necessary resources to ", Person);

provide food(Person) ;

provide water(Person) ;

provide shelter(Person).
+!reassess situation(Person) : true <-

.print("Reassess the situation and provide further assistance t
reassess(Person).

We made a somewhat unusual design

choice: to enable the use of two AgentSpeak

implementations simultaneously: python-

agentspeak and Jason.

| figured that the python-agentspeak would

have library functions necessary to cleanly

discuss between Python and Java, and it

adds some flexibility.

This might cause some confusion about

which contexts are involved, although we

intend to address that via naming

conventions.

So, our SuperAGI<->Jason bridge uses:

¢ Jason/AgentSpeak(L)

e Feature-complete
¢ Jason is Programmed in Java

e Reasons about AgentSpeak(L)
e Uses a Prolog-like language

e python-agentspeak
¢ Not feature-complete
¢ Programmed in Python

e Reasons about AgentSpeak(L)
e Uses a Prolog-like language

e Py4J

¢ Bridges from Python to Java
e Connects our Python-based plugin with Jason

Recall the Earlier Early Control Flow:

ull the first incomplete task

Execute task

Execution Agent

Return result

Step 2: Enrich result and store in Vector DB

Retrieve context Return context _ Store result in Vector DB

Context Agent Step 3: Create new tasks and reprioritize task list

Create new tasks / Return new tasks \ Reprioritize task list)Return prioritized tasks

Task Creation Agent Prioritization Agent

Jason/AgentSpeak(L) Event Loop:

Agent

perceive

\)

Extemal
Event

\ Relevant fo
Beliefs to Internal a lee. of o
Add and Events heck __ Plan: Unify

Delete / Context } {

Messages Messa; Selected
checkMail Intention

‘ —>
Means Intenti

“10

Execute Action Actions Intended

Intentions

New Messages Suspended Intentions Intentions ‘a Binion oe
(Actions and Mi

/ Updated
Intention

Simplified Jason/AgentSpeak(L) control-loop:

1: B —~ BO; PlanLib ~ PlanLib 0 ; Ev - {} ; I + {}

cS) p «— SENSE ENV()
uA BEL _UPDATE(p, B, Ev)
oe if Ev is not empty then

6: ev — FETCH EVENT(Ev)
vie p « SELECT PLAN(ev, B, PlanLib)
3} if ev is an env change or a new goal to achieve then
) I ~ I vu {NEW _INT(p, ev)}
tO else if ev is a sub-goal to achieve then
a PUSH PLAN(curriInt, p, ev)

1 end if

ce end if

14: if I is not empty then
15: currInt — SELECT INTENTION(T)

16: a «— FETCH NEXT ACTION(currInt)

we EXEC ACTION(a, curriInt, B, I, PlanLib)

coe end if

19: end Loop

Next we show an example of a Python

program running both python-agentspeak

and Jason/AgentSpeak(L).

We will eventually insert code like this into

the toolkit plugin.

We achieved Python<->Java integration

using Py4J.

#!/usr/bin/env python

import agentspeak
import agentspeak. runtime
import agentspeak.stdlib
import os
import pprint
from py4j.java gateway import JavaGateway, java import

gateway = JavaGateway ()
java_import(gateway.jvm, "py4j.examples.JavaAgentSpeakClient")

actions = agentspeak.Actions(agentspeak.stdlib.actions)
.add function(".call_ java agentspeak", (int,))
defcall_java_agentspeak(x):

stack = gateway.entry point.getStack();
pprint.pprint("Adding to stack: "+str(x));

stack.push(str(x));

return 1;

env = agentspeak. runtime.Environment ()

withopen(os.path.join(os.path.dirname(file), "“agent.asl")) as sourc

agent = env.build agent(source, actions)
si iT

env.run_ agent (agent)

Istart.

// +'start <-// .custom action(3, X);
vA .print('X =', X);
AL .print('I LOVE THIS!').

+!start <-+goal(solveUserProblem(andrewDougherty,problem1) ,3).
+goal(X,Y) <-

.call_java_agentspeak(Y,Z);

.print('I LOVE THIS!: ',X,Z).
// +'call_language model (Model

The next video is hard to follow:

e Shows our successful technology integration experiment
e We separately launch Jason and Python
¢ The Jason environment has code to startup the Java end of

the Py4J bridge

e The Python script loads the python-agentspeak Library
¢ Declares a a python-agentspeak internal action

call_java_ agentspeak/2
e Proceeds to run the agent specified by agent.asl
e Agent defines a plan to add a belief goal/2

e A trigger for adding a belief which defines a plan to

call the call _ java agentspeak/2 with some args.
e The call _java_agentspeak/2 internal action then uses Py4J

to obtain the Java stack object

e The call _java_agentspeak/2 proceeds to push its first
argument onto the Java stack object

tc ee ee eee ee
0

UU.

What kind of use-cases are enabled by this

new bridge between Python and

AgentSpeak?

CaO OPIS u oD a TCS eon Cae SCM Ce t/a |= 3% +) OD

The Free Life Planne

DRAFT - Do NOT Distribut

ndar

hn Dou

Positive indicators. Fre
ay be copied ad infinitum fore

moder artificial int
in increasingh

th

Plann tematic i

Introduction
of the Software

To End the "Information Dark Ag¢
the right information to the

Fight medium with the righ deta
> belong by definition to wh

time inthe rit
mains unsatisfied

term the “information dark
he author rently heard of situation in which a patent

records had not been transferred tothe appropriate physician,
reatment involving electrical his might have proven

dipitously discovered the
ch situations underscore several facts: that sm

ages” that some people must sel-advocate, that life-and-death mat
and that systematic or catch-all solutions a

DRAFT - Do NOT Dist

https://freelifeplanner.org/doc

https://altruisticsoftware.org/frdcsa

Through Jason, SuperAGI and the FRDCSA

and Free Life Planner systems can pass

messages to each other.

This is a massive force multiplier, as it

enables both to control each other.

However, we found setting up Py4J, given

our lack of experience with either language,

to be difficult and time consuming.

This is why we weren't able to get further

along with the AgentSpeak Toolkit.

| still need to decouple FLP's Jason<-

>SWIPL interface from the Python interface,

in order to have a public release.

However the code as Is can be found here:

https://github.com/aindilis/jason

In particular, see:

e https://github.com/aindilis/jason/tree/master/examples

¢ python-adapter

¢ python-adapter/scripts
¢ python-adapter/src/java

!'THE_END.

