SUPERAGI
AGENTSPEAK TOOLKIT




Before the advent of LLMs and LLM-based
agents, there was much prior work on
autonomous agency.

We felt it important not to neglect, but to
INstead Incorporate, the preexisting research
INto autonomy.



Some features that I observed were lacking (when first
hearing about and then tinkering with LLM-based
autonomous agents):

e Sophisticated Control Flow / Event Loops
e Task Convergence

» Repeatability / Reproduciblity

e Verification / Formal Methods

e Sensing or Acting

e Declarative Programming



Example: Early Agent Control Flow:

Step 1: Pull the first incomplete task

Execute task

Execution Agent

Return result

Step 2: Enrich result and store in Vector DB

Retrieve context Return context Store result in Vector DB

Context Agent Step 3: Create new tasks and reprioritize task list

Create new tasks / Return new tasks \ Reprioritize task list )Return prioritized tasks

Task Creation Agent Prioritization Agent




We need something that can provide:

* Adherence: pin down the agent to keep 1t on task.

e Completeness: ensure that it doesn't drop the
ball on any tasks.

» Versatility: allow developers more control over
the agents.
e for use cases like our DeployGPT system.

e Explainability: allow a formal representation.



AgentSpeak Is a great language for
reasoning with beliefs, desires and
Intentions.

It IS great at adding and removing goals at
run time, which a lot of planning technologies
lack (like PDDL).



https://jason.sourceforge.net/wp

Jason

a Java-based interpreter for an
extended version of AgentSpeak

Home Description Documents Examples Demos Teaching Projects

Download the latest

version of Jason!
Apent Programming u DEWHLD'AD

Read the tutorial for installing
Jason as an Eclipse plug-in!
About Jason

Jason is an interpreter for an extended version of AgentSpeak. It implements the ECLIPSE PLUG-IN
itics of that language, and provides a platform for the development of '

multi-agent systems, with many user-customisable features. Jason is available Open o
Source, and is distributed under GMNU LGPL. See more in the Descl
11/11/2019
Links Jason  agents
publishisubscribe to ROS topics
m Jason on Githul |I—rn—_ using ROS Bridge. Check it out

= JAason on Sourceltorge

17110/2019
Authors i-F F

. nadg

Jason is developed by Jomi F. Hubner and Rafael H. Bordi : : using Jason:

done with many colleagues, in particular Michael Fisher, Joyce Martins, Alvaro Moreira,

« 1st place: LFC (using JaCaMo)
« d4th place: TRG

Renata Vieira, Willem Visser, Mike Wooldridge, but also many others, as acknowledged

in the manual (see the Documents page).

Watch replays of the matches and




rJason Is an interpreter for an
extended version of

AgentSpeak. It Implements the

operational semantics of that

language, and provides a

platform for the development of
multi-agent systems, with many

user-customizable features.”



WILEY SERIES IN AGENT TECHNOLOGY

programming
multi-agent systems

"AgentSpeak

.
s
]

e 8
R

Rafael H. Bordini e
Jomi Fred Hiibner = =
Michael Wooldridge




From:

One of the best known approaches to the development

of cognitive agents 1s the BDI (Beliefs-Desires-
Intentions) architecture. In the area of agent-oriented
programming languages 1n particular,

AgentSpeak has been one of the most influential abstract
lanqguages based on the BDI architecture. The type of

agents programmed with AgentSpeak are sometimes referred
to as reactive planning systems.



To the best of our knowledge, Jason 1s the first fully-
fledged 1interpreter for a much improved version of
AgentSpeak, 1ncluding also speech-act based 1inter-agent
communication.

Using Saci (for example), a Jason multi-agent system can
be distributed over a network effortlessly. Various ad
hoc i1mplementations of BDI systems exist,



but one 1mportant characteristic of AgentSpeak 1s 1ts
theoretical foundation: 1t 1s an i1mplementation of the
operational semantics, formally given to the AgentSpeak
Llanguage and most of the extensions available 1in Jason.



We therefore have begun work providing
SuperAGlI| with a marketplace toolkit that will
enable a DSL for control flow and event
loops, by exposing an AgentSpeak interface
to It.



AgentSpeak therefore can provide a
skeleton or backbone, upon which to rig the
LLM-based autonomous agent.

This will serve to both constrain and guide
the actions of the autonomous agents.



Integrating AgentSpeak w/ SuperAGlI can be
Ikened to creating a system with a co-
Processor.

We envision installing the AgentSpeak
marketplace toolkit, which will then hook
itself into the event loop / control flow of

SuperAGlI, and provide developers with extra
capabillities.



Both developers and autonomous agents
can eventually generate and edit the
AgentSpeak programs.

Furthermore, AgentSpeak programs can
Invoke and control all manner of LLM
behavior and API functions.



Here Is some sample Jason/AgentSpeak(L)
code that was generated by GPT-4.



levacuate(Person).
+!evacuate(Person) : true <-
. ("Identify the safest evacuation route for ", Person);
1dentify route(Person, Route);!communicate evacuation plan(Pers
+!communicate evacuation plan(Person, Route) : true <-
. ("Communicate the evacuation plan to ", Person);
inform person(Person, Route).
+!monitor evacuation(Person) : true <-
. ("Monitor the evacuation progress of ", Person);
monitor progress(Person).
+!provide resources(Person) : true <-
. ("Provide necessary resources to ", Person);
provide food(Person);
provide water(Person);
provide shelter(Person).
+!reassess situation(Person) : true <-
("Reassess the situation and provide further assistance t

reassess (Person).



We made a somewhat unusual design
choice: to enable the use of two AgentSpeak
Implementations simultaneously: python-
agentspeak and Jason.



| figured that the python-agentspeak would

nhave library functions necessary to cleanly

discuss between Python and Java, and it
adds some flexibility.



This might cause some confusion about
which contexts are Involved, although we
Intend to address that via naming
conventions.



So, our SuperAGI<->Jason bridge uses:

 Jason/AgentSpeak(L)
e Feature-complete
e Jason 1s Programmed 1n Java
e Reasons about AgentSpeak(L)
e Uses a Prolog-like language

 python-agentspeak
e Not feature-complete
* Programmed 1n Python
e Reasons about AgentSpeak(L)
e Uses a Prolog-like language

e Py4)
e Bridges from Python to Java
e Connects our Python-based plugin with Jason



Recall the Earlier Early Control Flow:

Step 1: Pull the first incomplete task

Execute task

Execution Agent

Return result

Step 2: Enrich result and store in Vector DB

Retrieve context Return context Store result in Vector DB

Context Agent Step 3: Create new tasks and reprioritize task list

Create new tasks / Return new tasks \ Reprioritize task list )Return prioritized tasks

Task Creation Agent Prioritization Agent




Jason/AgentSpeak(L) Event Loop:

Beliefl

J' o I
Beliet Base

f,k" Library

peri "CIvVe

i
o
-

Selected
Heliels s Evenl

e e e s —

L.xternal |:xternal
Lvents Events

iy

yz _ Relevant 5 N\ = _~
‘ X Beliels 1o Internal J,-'"# l l[ ‘hecl ~1"|,| Plans | h‘r nif 1 -
{ SocAce \dd and ! ""”I}"’ rert | el )‘ Plans
"-\\‘- f..-""f Delete / . Lontext )} FEvent .

\"\‘\ J!‘,.a'"f 1 J!;-'"

T -

\pphcable Beliets

—— / Plans
3 : \ - —

! N : %, ..-i""'-‘_ﬂ_ b
1 r iy “!1!: LY | . N, & 4 I‘I / H \\\- } .1"'-._1..... H i l v, 1:_. | ! ﬂi‘...’ lll ‘\\ I :
checkMail ' i I / . Intended NJntenton p Execute \ Action Actions
B . N R | )—» act
. /v Means \ [ntention
_.' . Y i = 1 .l"\\
S — \ LS N , 7™
'.___‘.ll . 5 ‘r‘ "'\._\“ F,

i
%
Y -

\‘. send

Push : N e Messages

Suspended Intentions Intentions N B *& Intention sendMs e

(Actions and Msgs)

u""l. T
/7 Updated
Intention




Simplified Jason/AgentSpeak(L) control-Lloop:

1: B -« B0 ; PlanLib - PlanLib 0 ; Ev « {} ; I « {}
2: loop

3: p — SENSE ENV()

4 : BEL UPDATE(p, B, Ev)

5: 1T Ev 1s not empty then

6: ev — FETCH EVENT(Ev)

7: p —« SELECT PLAN(ev, B, PlanLib)

8: 1f ev 1s an env change or a new goal to achieve then
9: I « I u {NEW INT(p, ev)}

10: else 1f ev 1s a sub-goal to achieve then
11: PUSH PLAN(currInt, p, ev)

12: end 1f

13: end 1f

14 : 1f I 1s not empty then

15: currInt — SELECT INTENTION(I)

16: a — FETCH NEXT ACTION(currInt)

17 : EXEC ACTION(a, currlInt, B, I, PlanLib)

18: end 1f

19: end loop



Next we show an example of a Python
program running both python-agentspeak
and Jason/AgentSpeak(L).

We will eventually insert code like this Into
the toolkit plugin.

We achieved Python<->Java integration
using Py4J.



#!/usr/bin/env python

1import agentspeak

import agentspeak.runtime

import agentspeak.stdlib

import os

import pprint

from py4j.java gateway import JavaGateway, java import

gateway = JavaGateway()

java 1mport(gateway.jvm, "pydj.examples.JavaAgentSpeakClient")

actions = agentspeak.Actions(agentspeak.stdlib.actions)

.add function(".call java agentspeak”, ( , )

def (x):
stack = gateway.entry point.getStack();
pprint.pprint("Adding to stack: "+ (x));
stack.push( (x)):

return 1;

env = agentspeak.runtime.Environment()

with (os.path.join(os.path.dirname( file ), "agent.asl")) as sourc
agent = env.build agent(source, actions)

1f == " main ":

env.run_ageﬁt(agen%)



Istart.

// +lstart <-// .custom action(3, X);
// . (‘X =", X);
// . (‘I LOVE THIS!'").
+!start <-+goal(solveUserProblem( Dougherty,probleml), 3).
+goal(X,Y) <-
(Y, Z);
(‘I LOVE THIS!: ',X,2).

// +! call - language model (Model



The next video 1s hard to follow:

 Shows our successful technology i1integration experiment

e We separately launch Jason and Python

* The Jason environment has code to startup the Java end of
the Py4] bridge

 The Python script loads the python-agentspeak library

* Declares a a python-agentspeak internal action
call java agentspeak/2

e Proceeds to run the agent specified by agent.asl

e Agent defines a plan to add a belief goal/2

e A trigger for adding a belief which defines a plan to
call the call java agentspeak/2 with some args.

* The call java agentspeak/2 internal action then uses Py4)]
to obtain the Java stack object

* The call java agentspeak/2 proceeds to push 1ts first
argument onto the Java stack object



Must puard., guard. puard. guard, guard...

]

UL - #%——F1 %shell= All L2 {Shell :run WK edna Projectile)




What kind of use-cases are enabled by this
new bridge between Python and
AgentSpeak?



The Free Life Planner (DRAFT - Do NOT Distribute!!): A Virtual Secondary Social Safety Net

1 /2 —  75% + HEED

The Free Life Planner
(DRAFT - Do NOT Distribute!!):

A Virmual Secondary Social Safery Net

Andrew John Dougherty
FRIDNCS A Project

Albstroct

Could free software artificial intelligence be uniguely positoned o help allevi-
ate poverly, hunger, disease, and a slew of other aptly-termed “wicked problems™
There are a number of positive indicators. Free softwoere such as Linux has the
benevolent property that it may be copied ad infinitum for essentially zero cost,
enahling world-wade distmbution. Moreover, modem artiheial imtelligence solt-
ware on commodity hardware 1s capable of solving an increasingly wide range of
problems, often with superhuman performance. Addionafly, the digital drvide 15
disappearing. with miermedianes able to reach the resl. These factors mean that
essentally everyone may soon have pocess to-or benefit from free superhuman in-
lelligence. If 50, & vinual secondary social safety net system could be developed
{al near-zeno development and maorginal cost), which could help people to be more
self-rehant and less dependent on a pnmary social satety net. This could help to
mmprove gquality of iife, redoce suffenng, and save ves. We propose the Free Lite
Planner (FLP}. a systematic life-planmng system intended to help fulhll this oppor-
tunity.

Introduction
Purpose of the Software

To End the " Information Dark Apes™.  The lete Dr. Jumme Carbonell had the provseworthy
goul of "geiting the nght informabion to the nght people at the nght ome in the nghi language 0 the
right medium with the right level of detail." ="' Anywhere this goal remains unsatisfied we consider
ter belong by dehimition to what we term the "imformatesn dark ages.”

The author recently heard of a situation i which a patient with a pacemeker, whose medical
records had nol been transferred 1o the appropriate physician, was scheduled o underoo medical
treatment mvelving electrical shocks. This maght have proven serious or fatal, had not o conhdant
serendipriously discovered the 1ss

auch siuatons underscore several bects: that some people stll fve n the "information dark

ages” that somme people must self-advocate. that lite-and-death matiers are best not left io chance,
ond that systematic or catch-all solutions are needed

A VIRTUAL SECONDARY SOCIAL SAFETY NET DEAFT - Do NOT Distrbute !

| 4=



nttps://freelifeplanner.org/doc



nttps://altruisticsoftware.org/frdcsa



Through Jason, SuperAGI and the
and systems can pass
messages to each other.

This I1s a massive force multiplier, as it
enables both to control each other.



However, we found setting up Py4J, given
our lack of experience with either language,
to be difficult and time consuming.

This Is why we weren't able to get further
along with the AgentSpeak ToolKit.



| still need to decouple 'S Jason<-
>SWIPL Interface from the Python interface,

IN order to have a public release.



However the code as IS can be found here:



In particular, see:

e python-adapter
* python-adapter/scripts
* python-adapter/src/java



'THE_END.



